Taking the Red Pill:

Lessons Learned on Machine Learning for Computer Security

Daniel Arp | Technische Universitat Berlin and University College London

Erwin Quiring | ICSI and Ruhr University Bochum

Feargus Pendlebury | University College London

Alexander Warnecke | Technische Universitit Berlin and BIFOLD
Fabio Pierazzi | King’s College London

Christian Wressnegger | KASTEL Security Research Labs and Karlsruher Institute of Technology
Lorenzo Cavallaro | University College London

Konrad Rieck | Technische Universitit Berlin and BIFOLD

Artificial intelligence and ma-
chine learning have enabled remark-
able progress in science and industry.
This advancement has naturally also
impacted computer security, with
nearly every major vendor now mar-
keting Al-driven solutions for threat
analysis and detection. Similarly, the
number of research papers applying
machine learning to solve security
tasks has literally exploded.

These works come with the im-
plicit promise that learning algo-
rithms provide significant benefits
compared to traditional solutions. In
recent years, however, different stud-
ies have shown that learning-based
approaches often fail to provide the
promised performance in practice
due to various restrictions ignored
in the original publications [e.g., 1, 2,
3, 4]. In this article, we want to ask:
Are there generic pitfalls that can af-
fect the experimental outcome when
applying machine learning in secu-
rity? And, if so, how can researchers
avoid stepping into them?

Why Should I Care?

As a thorough researcher, one might
tend to think “this can never happen
to me.” However, as we will discuss
in this article, pitfalls come in var-
ious forms and flavors, some obvi-
ous but others noticeable only with

a very cautious eye. Hence, even
experienced researchers might step
into them from time to time without
noticing. With this work, we want to
raise awareness of these issues in the
research community to reduce their
prevalence in security research. De-
tailed recommendations and guide-
lines for each of the pitfalls can be
found in the original papaer [5].

Entering the Matrix

To illustrate the problem without
pointing fingers at others, let us con-
sider the fictional company Meta-
Cortex. The company specializes in
the discovery of security vulnera-
bilities in source code. The neces-
sary code analysis, however, is time-
consuming and tedious. To speed up
the process, the company decides to
leverage machine learning to auto-
mate the discovery of vulnerabilities,
as corresponding methods have al-
ready been seemingly successfully
applied in the literature [e.g., 6, 7].
Specifically, MetaCortex chooses
to build its solution on a deep neu-
ral network due to the popularity of
this learning model in other fields.
And indeed, the developed model
achieves an excellent performance
on a common benchmark dataset, so
that the company decides to inte-
grate it into a new product and sell it

to its customers, awaiting a big com-
mercial success.

Taking the Red Pill

Unfortunately, it turns out that the
model performance cannot keep up
with the promises made, and Meta-
Cortex’s customers start to complain.
What went wrong? A closer look
at the company’s machine learning
pipeline uncovers various pitfalls
the company accidentally stepped in
while developing their model.

In the following, we discuss
some of the factors that might have
led to an over-estimation of the
method’s capabilities. Note that,
while we focus on this solely fictive
example, all discussed issues are in-
spired by actual mistakes found in
previous works.

Spurious Correlations. Even
though deep neural networks have
led to major breakthroughs in var-
ious areas, it is often unclear why
they achieve this impressive per-
formance. Fortunately, in recent
years, several methods have been
developed that enable the interpreta-
tion of these models, shedding some
light on the decision-making process
of neural networks [8]. The appli-
cation of an explanation method,
like Layer-wise Relevance Propaga-

This a preprint version of an article published in IEEE Security & Privacy Magazine, September 2023

Machine learning workflow

Data collection

System design Performance

and labeling

i
1
Security problem 1
e.g., novel attacks |

Deployment and

and learning evaluation

operation

Security solution,
g., learning-based IDS

Common pitfalls
with prevalence in

the machine learning

for security literature .
! k Label inaccuracy

B preent

Present (but discussed)

Spurious correlations

vs | Biased parameters rs

Partly present

Partly present (but discussed)

Unclear from text

Does not apply

L |
1 J) Sampling bias s) Data snooping o = Inappropriate baselines I’g Lab-only evaluation
"R Inappropriate measures P10

Base rate fallacy

Inappropriate threat model

Not present

Figure 1: Common pitfalls of machine learning in computer security and their prevalence in the literature.

tion (LRP) [9], allows researchers to
inspect the features most relevant to
the prediction.

In the case of our fictive com-
pany, we find that the highlighted
features are barely connected to secu-
rity vulnerabilities. Instead, the most
relevant features are meaningless to-
kens like brackets or commas in the
source code, which have no seman-
tic relevance to vulnerable code and
thus represent non-causal spurious
correlations. It seems as if these arti-
facts serve as shortcuts that allow the
model to distinguish between vulner-
able and non-vulnerable code. But
how did this happen?

Sampling Bias. A possible and
common reason for the presence
of spurious correlations is sampling
bias. In this case, the distribution
of the training data does not suffi-
ciently represent the distribution at
test time. Consequently, the model
is not able to learn the underlying
concept of the given task, but rather
relies on artifacts introduced in the
training distribution. When compos-
ing a dataset for training the model,
researchers need to be aware that
there exist a variety of sources for
sampling bias, some of which being
very subtle. The strategy for collect-

ing the data might thus bias the re-
sulting dataset towards certain soft-
ware versions, code authors, or pro-
gramming languages. These factors
are then (maybe indirectly) used by
the machine learning model to dis-
tinguish between classes, instead of
solving the actual task [e.g., 5, 10].

Data Snooping. Let us assume
that the collected dataset does not
suffer from sampling bias. Are there
any other—less known-issues that
might result in huge differences in
the performance at training and test
time? Indeed, another common pit-
fall that can lead to over-optimistic
results is commonly referred to as
data snooping. Here, a learning
model is trained with information
that would not be available in prac-
tice. While this appears to be a pit-
fall that can be avoided very easily
at the first glance, it turns out to be
much harder to avoid than expected
in many cases.

The reason is that data snoop-
ing exists in many different forms,
some of which can be easily over-
looked. For example, using incorrect
time splits that ignore time depen-
dencies within the data can inflate
the actual performance [1]. Similarly,
this pitfall applies if noisy data is

removed from the test set based on
knowledge that would normally not
be available at training time. Even
more subtle, solely evaluating well-
known benchmark data might also
over-estimate the performance. Es-
tablished benchmarks come with a
history, so that researchers may un-
noticeably use knowledge from prior
work—including insights from the
test distribution.

The Greater Picture

The previous example illustrates that
there obviously exists a number of
pitfalls that can potentially harm the
experimental outcome. However, the
previously discussed issues are just
the tip of the iceberg and the Meta-
Cortex company likely faces further
problems.

In this section, we provide a sys-
tematic overview of common pit-
falls and their prevalence in a set of
30 top publications we selected for
our study. We follow the individual
stages of a typical machine-learning
pipeline that Figure 1 illustrates to-
gether with all pitfalls. The colored
bar shows their prevalence in our
study, with warmer colors depicting
the presence of a pitfall. Table 1 sum-
marizes each pitfall.

Pitfall

Description

P1 Sampling Bias

P2 Label Inaccuracy

P3 Data Snooping

P4 Spurious correlations

P5 Biased Parameter Selection

P6 Inappropriate Baseline

P7 Inappropriate Performance Measures
P8 Base Rate Fallacy

P9 Lab-Only Evaluation

P10 Inappropriate Threat Model

The composed dataset does not sufficiently represent the actual distribution.

The ground-truth labels are inaccurate, unstable, or erroneous.

Information is used at training time that is usually not available in practice.

A learning model relies on false associations caused by artifacts unrelated to the task.

Final parameters of a learning method are indirectly determined on the test set.

No adequate baseline methods are used in the evaluation for comparison.

Used performance measures are not suitable for the application scenario.

Large class imbalance is ignored when interpreting the performance.

The developed system is only tested in a laboratory setting.

Attacks against the machine-learning component itself are not considered.

Table 1: Overview of common pitfalls of machine learning in computer security.

(1) Data collection and labeling
phase. Before we can start with
developing a new learning-based
method, we first have to collect an
expressive dataset that resembles the
data distribution we assume to see in
practice. Moreover, we also often re-
quire meaningful label information
if we want to apply supervised learn-
ing. Unfortunately, the composition
of a realistic dataset with labels is of-
ten challenging, leading to the first
two pitfalls: (P1) Sampling bias and
(P2) label inaccuracy.

We have already discussed how
sampling bias can affect the exper-
imental outcome. Similarly, in the
case of P2, the labels are erroneous
or unstable, which, in turn, can also
impact the performance of a learning
model if we do not correct this noise.

(2) System design and learning
phase. Once we have composed a
dataset, we can design and train our
learning model. This stage includes
the pre-processing of the data, the ex-
traction of suitable features, as well
as learning the actual model. In this
stage, we can step in three pitfalls
when not being careful: (P3) Data
snooping, (P4) spurious correlations,
and (P5) biased parameter selection.

In the case of P3 and P5, the
separation of training and test par-
tition is flawed, so that the model
uses information that is unavailable
at test time, biasing the outcome of
the experimental setup. For instance,
the developers might ignore time
dependencies within the collected
data, such that the machine learning
model is trained on data comprising
future knowledge (which is not avail-
able outside the matrix). Another is-
sue arises from P4. Here, the feature
design allows the model to pick up
on artifacts unrelated to the security
pattern, thus creating a shortcut for
solving the actual tasks. While this
can be unproblematic in some cases,
it can also lead to serious problems
and let the model fail completely dur-
ing its deployment.

(3) Evaluation Phase. In the next
stage, we evaluate the previously
trained model and examine its per-
formance on test data. Here, we have
to pay attention to not step into one
of the following three pitfalls: (P6)
Inappropriate baseline, (P7) inappro-
priate performance measures, or (P8)
the base rate fallacy [11].

In the case of P6, the learning
model is not compared against suit-

able baseline approaches. For in-
stance, a simple, non-learning-based
method can sometimes achieve a
similar or even better performance
than a complex deep neural network.
However, due the lack of compari-
son, this fact remains hidden. A sim-
ilar problem arises if the chosen per-
formance measures are not appro-
priate for the application scenario
(P7). As an example, we often have to
deal with highly imbalanced datasets
in security, like in malware detec-
tion. In these cases, we have to iden-
tify malicious objects that represent
only a small proportion of the en-
tire data distribution. When using
the wrong metrics in these settings,
like the accuracy, one gets an en-
tirely false estimate of the true per-
formance of a learning-based system.
Moreover, even if proper metrics are
used, the performance of a system
might still be overestimated by ignor-
ing the base rate of the negative class
in reality (P8). Let us assume, for ex-
ample, a seemingly efficient classifier
with 99% true positives at 1% false
positives. Yet, if we have a class ratio
of 1:100, even 1% false positives still
cause 100 false positives for every 99
true positives.

(4) Deployment and Operation
Phase. Finally, we obtain a learn-
ing model whose detection perfor-
mance meets our requirements. We
can now deploy and operate it in the
wild. We might already assume that
we have successfully escaped the ma-
trix. Unfortunately, there are still
two additional pitfalls that can have
a severe impact on the performance.

First, we should account for any
practical limitations that we did not
consider throughout the evaluation.
Oftentimes, new learning methods
are solely evaluated in lab-only en-
vironments (P9), where crucial con-
straints of realistic settings are ig-
nored, such as run-time or storage
restrictions. As a result, a promis-
ing method might turn out to be un-
suitable in a production setting. Fur-
thermore, we need to consider the
security of our learning-based system,
as adversaries might run targeted at-
tacks against it (P10). For instance,
malicious actors could try to circum-
vent detection or derive information
about the underlying learning model.

Bending the Spoon

Naturally, the question arises how
likely each of the previously dis-
cussed pitfalls occurs. To get an intu-
ition, we review 30 academic papers
published at top conferences for se-
curity between 2011 and 2020. When
selecting the papers, we ensure that
they cover a wide range of security-
related topics, ranging from learning-
based malware detection to intelli-
gent vulnerability discovery. If a pit-
fall’s presence is unclear, the review-
ers decide conservatively and always
give the authors the benefit of the
doubt. A precise description of our
assessment criteria can be found in
the original article [5].

Figure 1 highlights the outcome
of the study. We find that the pitfalls
are widespread even in top research.
Each paper is affected by at least
three of the discussed issues. The
most prevalent pitfall is sampling
bias (P1), followed by data snooping
(P3), which are at least partly present
in 90% and 73% of the considered
publications, respectively. Similarly,
other pitfalls occur frequently, such
as the use of inappropriate perfor-
mance measures (P7) or the evalua-
tion in a lab-only setting (P9), both of
which appear in at least 50% of all the
papers. Interestingly, we find that
that the presence of a pitfall is only
accompanied by a discussion in 22%
of the cases, indicating that there is
a lack of awareness regarding these
common issues.

To get a full picture of the situ-
ation, we have also collected feed-
back from the authors of the re-
viewed papers. The vast majority
of the authors from which we re-
ceived a response agreed that there
is a lack of awareness for the iden-
tified pitfalls and confirm that these
are widespread in security research.

Escaping the Matrix

The discussed pitfalls are more than
just an academic problem. In fact,
they introduce severe biases and hin-
der actual progress in research. As a
result, we need to discuss within the
community how to overcome these
problems in the future.

First and foremost, it is possi-
ble to avoid the identified pitfalls in
many cases. Therefore, we recom-
mend double-checking each stage of
the machine learning pipeline and
looking out for potential issues when
developing a new approach. To this
end, detailed recommendations and

guidelines for each of the pitfalls
can be found in the original publi-
cation [5]. For instance, methods to
fix inaccurate labels or methods of
explainable AI (XAI) to check for spu-
rious correlations are applicable.

Unfortunately, there exist cases
in which it can be challenging to
avoid a pitfall entirely. As an exam-
ple, it might be hard to compensate
for sampling bias due to a lack of
data. In these cases, it is crucial to
openly discuss the problem so that
other researchers can solve it in the
future. In general, we thus recom-
mend to “do your best” by mitigating
pitfalls where possible and acknowl-
edge remaining problems openly.

Finally, we like to stress that it
is not our intention to take the fun
out of machine learning in security
research. In fact, the opposite is true.
We strive to promote sound research
and bring the enormous potential of
artificial intelligence into the reality
of security, so that red pills are no
longer necessary.

References

[1] F. Pendlebury, F. Pierazzi, R. Jor-
daney, J. Kinder, and L. Cavallaro.
TESSERACT: Eliminating exper-
imental bias in malware classifi-
cation across space and time. In:
Proc. of USENIX Security Sympo-
sium. 2019, pp.729-746.

M. Juarez, S. Afroz, G. Acar,
C. Diaz, and R. Greenstadt. A
Critical Evaluation of Website
Fingerprinting Attacks. In: Proc.
of ACM Conference on Com-
puter and Communications Secu-
rity (CCS). 2014.

S. Kapoor and A. Narayanan.
Leakage and the Reproducibility
Crisis in ML-based Science. In:
arXiv preprint arXiv:2207.07048
(2022).

(4]

(5]

(6]

L. Cavallaro, J. Kinder, F. Pendle-
bury, and F. Pierazzi. Are Ma-
chine Learning Models for Mal-
ware Detection Ready for Prime
Time? In: IEEE Security & Privacy
21(2) (2023), 53-56.

D. Arp, E. Quiring, F. Pendle-
bury, A. Warnecke, F. Pierazzi, C.
Wressnegger, L. Cavallaro, and K.
Rieck. Dos and don’ts of machine
learning in computer security. In:
Proc. of USENIX Security Sympo-
sium. 2022.

F. Yamaguchi, N. Golde, D. Arp,
and K. Rieck. Modeling and
Discovering Vulnerabilities with
Code Property Graphs. In: IEEE

(7]

(8]

Symposium on Security and Pri-
vacy (S&P). 2014, pp.590-604.

Z.Li,D. Zou, S. Xu, X. Ou, H. Jin,
S. Wang, Z. Deng, and Y. Zhong.
VulDeePecker: A Deep Learning-
Based System for Vulnerability
Detection. In: Proc. of Network
and Distributed System Security
Symposium (NDSS). 2018.

A. Warnecke, D. Arp, C. Wress-
negger, and K. Rieck. Evaluating
Explanation Methods for Deep
Learning in Security. In: Proc. of
the IEEE European Symposium on
Security and Privacy (EuroS&P).
2020.

(9]

(10]

(1]

S. Bach, A. Binder, G. Montavon,
F. Klauschen, K.-R. Miiller, and
W. Samek. On Pixel-Wise Expla-
nations for Non-Linear Classifier
Decisions by Layer-Wise Rele-
vance Propagation. In: PLOS ONE
10(7) (July 2015), 1-46.

S. Chakraborty, R. Krishna, Y.
Ding, and B. Ray. Deep Learn-
ing Based Vulnerability Detec-
tion: Are We There Yet? In: IEEE
Transactions on Software Engi-
neering 48(9) (2022), 3280-3296.

S. Axelsson. The base-rate fallacy
and the difficulty of intrusion de-
tection. In: ACM Transactions on
Information and System Security
(TISSEC) 3(3) (2000), 186—205.

