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Abstract—Modern deep learning methods have long been
considered black boxes due to the lack of insights into
their decision-making process. However, recent advances in
explainable machine learning have turned the tables. Post-hoc
explanation methods enable precise relevance attribution of
input features for otherwise opaque models such as deep neural
networks. This progression has raised expectations that these
techniques can uncover attacks against learning-based systems
such as adversarial examples or neural backdoors. Unfortu-
nately, current methods are not robust against manipulations
themselves. In this paper, we set out to systematize attacks
against post-hoc explanation methods to lay the groundwork
for developing more robust explainable machine learning. If
explanation methods cannot be misled by an adversary, they
can serve as an effective tool against attacks, marking a turning
point in adversarial machine learning. We present a hierarchy
of explanation-aware robustness notions and relate existing
defenses to it. In doing so, we uncover synergies, research gaps,
and future directions toward more reliable explanations robust
against manipulations.

Index Terms—Explainable Machine Learning, XAI, Attacks,
Defenses, Robustness Notions

1. Introduction

Ever since the wide adoption of machine learning, the
community has striven for ways to explain the inner workings
of learned models [92, 100]. The complexity and non-
linearity of modern deep learning schemes has, however,
raised the bar to do so distinctively [139]. In contrast to
simple linear models, neural networks are not inherently
explainable [115, 137]. Recent research has thus brought for-
ward various post-hoc explanation methods that can precisely
attribute relevance to input features, explaining the decision-
making process of the model [2, 67, 199]. These techniques
are applied to existing machine learning models, operate on
individual input samples, and are either model agnostic [e.g.,
90, 104, 129, 130] or are tailored to the specific model
at hand [e.g., 12, 141, 144, 147, 160, 191]. The former are
referred to as “black box explanations” as they only consider
high-level input-output relations, while the latter, so-called

“white box explanations”, assume perfect knowledge of all
model parameters and involved computations [23].
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Figure 1: Attacks ( M ) against an XAI-system S and defense
strategies during model training ( T ) and system operation
( O ). Fθ predicts class label y for input x based on model θ
that is trained on a training dataset D. hθ represents a post-
hoc explanation method deriving an explanation r of the
input sample.

With the advent of adversarial machine learning [120]
the need to reliably explain learned models continues un-
abated [62, 119]. Spurious correlations can cause shortcuts
in the decision-making process [91] which may be used to
bypass detection [103, 173]. It thus is oftentimes recom-
mended applying explanation techniques “to gain a better
view of the capabilities of a learning-based systems” [10].
However, explanations themselves can be forged through
input manipulations [48, 152, 198] and various model ma-
nipulations [118, 151] similar to adversarial examples [161]
and neural backdoors [65, 173], respectively. Thus, it is
questionable whether current post-hoc explanation methods
can indeed accomplish this goal in practice.

In this paper, we lay the groundwork for understanding
the limits and potentials of explainable machine learning
in adversarial environments. We systematize attacks against
explanation methods, so-called explanation-aware attacks.
Fig. 1 shows the different leverage points of an adversary, that
is the different threat models for input manipulation ( M1 ),
model manipulation ( M2 ), and whole system manipula-
tion ( M3 ). The latter represents a particularly strong adver-



sary, capable of manipulating any aspect of the XAI-system
at any point of the pipeline. Additionally, our systematization
covers different attack objectives in terms of the attack’s
outreach and scope. While the first considers whether the ex-
planations or predictions of the original model are preserved
or both are manipulated. The latter differentiates targeted,
semi-targeted, and untargeted attacks. This categorization
covers traditional input-level [e.g., 48, 86, 198] and model-
level manipulations [e.g., 71, 118, 195], but also more recent
system-level threats such as fairwashing [e.g., 3, 8, 151].

For further analysis, we then define robustness notions of
post-hoc explanation methods, modeling pairs of constraints
and restrictions that may be enforced to yield robust explana-
tions. One central finding of this systematized hierarchy of
robustness notions is that different authors describe different
understandings of robustness with the same key phrase. This
underlines the necessity of a common understanding of
explanation-aware robustness to push forward research in
this domain. In particular, robustness guarantees for post-hoc
explanation methods can be key to effectively defend against
adversaries attacking learning-based systems.

Based on this fundamental understanding of attacks and
robustness requirements, we proceed to taxonomize existing
defenses to counter explanation-aware attacks. In Fig. 1,
we mark locations in the machine learning pipeline where
defenses can be applied during training ( T1 – T4 ) and at
inference time during operation ( O1 – O3 ).

Compared to defenses against prediction-only attacks
[e.g., 14, 44, 106, 126, 138, 173], defenses against
explanation-aware attacks are scarce, as shown in a concur-
rent survey [16]. For our systematization, we thus explicitly
relate to defenses that have been explored for conventional
input and model manipulation attacks against a classifier’s
prediction. In doing so, we motivate the community to step
back and unify the knowledge of both fields to find more
effective defenses. We pose open research questions, whose
answers will eventually close the gap between these highly
related subfields. Most pressingly “What robustness guaran-
tees can we provide for post-hoc explanation methods?”

We are confident that our systematization can act as a
signpost toward effective defenses against explanation-aware
attacks. Most importantly, however, we build a foundation
and provide guidelines for creating and proving robust
explanation methods.
In summary, we make the following contributions:

• Systematization of attacks against explanations. We
systematize attacks against post-hoc explanations along
the adversary’s capabilities, constraints, and objectives.
In doing so, we highlight crucial differences and simi-
larities of threat models and attack objectives specific to
explanation-aware attacks.

• Explanation-aware robustness notions. We formalize
robustness against explanation-aware attacks and form a
hierarchy of robustness notions, that enables us to compare,
link, and unify efforts in the community. Moreover, we find
that robustness notions might be conflicting for adversaries
with diverging objectives.

• Taxonomy of defenses. We taxonomize existing defenses
based on the usual machine learning pipeline and relate
to defenses for prediction-only attacks. In each of the
identified categories, we raise research questions that will
help advance defense against explanation-aware attacks.

• Future research directions. We point out specific direc-
tions for future research on explanation-aware robustness
in order to help advance the field.

2. Background on Explainable ML

Similar to machine learning and artificial intelligence,
explainable machine learning and explainable artificial in-
telligence (XAI) are particularly wide fields of research.
Hence, in this section, we take a step back to detail the
scope considered in the remainder of the paper, laying
the groundwork for discussing attacks and defense within
this scope.

We consider post-hoc explanation methods that are ap-
plied to an existing (potentially difficult to explain) machine
learning model, explaining a single input at a time. These
methods have the benefit of being generic and applicable to
a large group of models. Moreover, performing a learning
task and explaining its results are fully disjoint compo-
nents, allowing for methodological improvement of both
aspects separate from each other. For this reason, models
that are intrinsically explainable, e.g., linear support vector
machines [143] or decision trees [133], are not part of
our systematization. The downside of a separate (post-hoc)
consideration of explanations is that this different viewpoint
on the model potentially diverges from the model’s actual
inference [60, 137]. An adversary may use this difference to
make the prediction (the model’s inference) report one thing
while the explanation reports something else.

In the following, we detail the notation used in the
remainder of the paper and formally define post-hoc ex-
planation methods. Next, we briefly outline how post-hoc
explanations are generated and how they are presented to the
user. We emphasize that we do not attempt to summarize
the field of XAI and refer the reader to surveys on the
topic [2, 31, 36, 39, 45, 46, 67, 109, 155, 199]. The notation
below forms a general framework for systematizing attacks
against post-hoc explanations that fits the state of the art of
these explanation techniques.

Notation. A machine-learning model is represented by its
parameters θ = (w,A) ∈ Θ, defined as an element of all
possible models Θ. The model’s weights and its architecture
are referred to as w and A, respectively. Moreover, we denote
the set of models with a fixed architecture ΘA ⊂ Θ. Each
model maintains a decision function fθ : X → Y that accepts
a d-dimensional input x from the feature space X ⊆ Rd and
derives a probability score for every possible class c ∈ [C]
as a C-dimensional vector in Y ⊆ [0, 1]C . The winning class
is determined by Fθ(x) := argmaxi fθ(x)i. The considered
dataset of n inputs X ⊆ X and corresponding ground-truth
labels Y ∈ [C]n is denoted as D = {(x1, y1), . . . , (xn, yn)}.



The dataset is then segmented to form training, validation,
and testing dataset accordingly.

A post-hoc explanation method determines relevance
of an input’s features to Fθ for arriving at that prediction
for a specific input. White box explanation methods take
recourse to knowledge about the model’s parameters θ ∈ Θ
implementing the function

hw
θ : X ×Θ→ E ,

where E is the explanation space, that is, the input’s repre-
sentation space for which relevance values are determined.
While this space can have different instantiations [156, 171],
in most settings, however, E is a subset of the input’s feature
space X . Black box explanation methods, in turn, implement
the function

hb
θ : X × {fθ}θ∈Θ → E ,

where {fθ}θ∈Θ represents black box access to a model.
Such methods have access to the input-output behavior of
the respective decision function, fθ(x), only.

For formal consideration in the remainder of the paper,
we additionally assume both X and E to be metric spaces,
(X , dX ) and (E , dE), with their respective distance metrics
dX and dE (cf. Section 5).

For two particular results, we assume X and E to also
be convex. This assumption holds whenever the inputs are
vectors or matrices of floating point numbers. However, for
categorical and discrete features this is not the case and these
two results do not necessarily apply. We emphasize these
limitations at the corresponding positions in the paper.

Generating Explanations. The strategies for generat-
ing explanations differ greatly, ranging from perturbation-
based [56, 90, 104, 129, 192], gradient-based [13, 83, 147,
160], and propagation-based methods [12, 110–112, 146,
196], over concept-based [61, 82, 190, 197] and example-
based [26, 41, 84] explanations, to activation-based tech-
niques [17, 32, 94, 144, 201]. Note that this is not an all-
encompassing list of methods but rather a rough overview.
Additionally, multiple techniques can be utilized at once, e.g.,
SmoothGrad [154] can be considered perturbation-based and
gradient-based, and GradCAM [144] can be regarded as a
combination of activation-based and gradient-based. However,
these techniques have in common that they fit the proposed
notation of mapping relevance/importance to features in an
explanation space E .

Please refer to dedicated surveys on explanation tech-
niques for a more comprehensive discussion [2, 31, 36, 39,
45, 46, 67, 109, 155, 199]. Whether individual approaches
have shortcomings such as redundancy, incompleteness, or
inconsistency [155, 182] is a discussion orthogonal to our
systematization of attacks against explanation methods.

Representing Explanations. Most commonly, post-hoc
explanations are visualized as heatmaps or saliency maps,
indicating the relevance of a specific feature or set of
features of the feature space with more or less bright colors.
Examples of different representations and thus explanation
spaces include pixel-based images [12, 147], text or program

code [11, 68], tabular data [129, 130], or graphs [141, 191].
Assuming the explanation space is equivalent to the feature
space or a subspace of it, e.g., for feature space Rc×h×w

the E might be Rh×w, meaning, it assigns relevance values
to pixels instead of individual color values. This can be
enforced by reducing the channel dimension via averaging
or taking the maximum [147].

Additional forms of representation include contrastive and
counterfactual explanations [169, 172], explainable surrogate
models and rule sets [66, 89, 123, 127, 129, 130], relations
comparing two instances [52, 130], or multimodal explana-
tions that, for instance, use text to describe images [79, 121].
Again, this is not an exhaustive list, but a rough overview.
We regard the specific representation of an explanation as
independent of our systematization and refer the reader to
related work of this adjacent research area [108, 171].

3. Threat Models

We begin to systematize the adversary’s capabilities and
their associated constraints. A schematic depiction of the
considered attack vectors is provided in Fig. 1. More formally,
an adversary A attacking local post-hoc explanation methods
faces an optimization problem, abstractly defined as:

min
A(K)

obj s.t. ω1(. . .) ∧ . . . ∧ ωN (. . .)

The adversary operates on certain knowledge K to manipulate
inputs xi ( M1 ), the model θ ( M2 ), and/or the entire XAI-
system S ( M3 ). She may know (a subset of) all original
inputs {x1, . . . ,xn} or any information about the model
and the original system S (e.g., the model’s architecture A,
its weights w, or the used explanation method h and its
parameters). However, depending on the threat model, the
available knowledge and the output of the adversary varies.
Additionally, constraints ωk restrict the adversary and define
her capabilities. For instance, she may perturb inputs within
a certain ϵ only, must not change the model’s architecture A,
or needs to apply the same manipulation on every input.

In the following, we detail threat models for manipulating
inputs (Section 3.1), the model (Section 3.2), and the overall
XAI-system (Section 3.3). Each has different constraints and
allows for varying degree of knowledge K, thus demanding
distinct attack capabilities and forcing the adversary to
produce different outputs, ⋆← A(K). Note that the attack
objective obj itself is detailed in Section 4, independently
of the threat models. Additionally, Table 2 lists works using
these threat models.

3.1. Input Manipulation M1

In the context of explanation-aware attacks the ability
to manipulate an input x is most frequently investigated [1,
5, 21, 48, 76, 150, 198]. Commonly, the adversary knows
about a specific sample x and perturbs it within the attack’s
constraints, yielding a malicious input x̃← A(x, . . .). In the
following, we discuss different constraints:



Imperceptibility. The adversary aims for imperceptible
perturbations. Hence, the difference between x and x̃ should
be small, meaning both inputs need to be as similar as
possible:

ωk(x, x̃) := dX (x, x̃) ≤ ϵ ,

for a limit ϵ ∈ R+. A straightforward choice for dX
frequently considered in literature [e.g., 29, 48, 62, 161] are
the Lp norms, ∥x− x̃∥p∈{0,1,2,∞}. For visual and audible
inputs there exist more sophisticated ways to measure the
perceptability to a human analyst, e.g., the “Structural
Similarity Index (SSIM)” for images [180].

Universality. Moreover, an adversary may operate on single
inputs or consider manipulations that universally apply to
multiple inputs at once. Universal input manipulations are
restricted to operations that perturb the input independent of
the input. Their evasive properties (defined by the overall
objective) need to apply for all inputs xi. Examples include,
adding a constant additive offset [113] or patch replace-
ment [159]. The latter also enforces a constraint on the
“input region”, meaning the features have to be manipulated
as described in the following.

Feature Subspaces. Occasionally the adversary only controls
a small, specific portion of each input, enforcing a masked
input manipulation [22, 97, 187]. More generally, the con-
straint limits the perturbation’s feature space and is modeled
by a mask vector m ∈ {0, 1}d, which is either a fixed
parameter of the threat model or chosen by the adversary.
We formalize this as:

ωk(x, x̃) := ((x ̸= x̃) ∨m) = m ,

where ∨ and ̸= are interpreted as element-wise operations.
Various extension exist, for instance: the mask might be
required to be a square [97, 187] or small in size ∥m∥0 ≤
ϵ0 [22, 170]. If m is chosen by the adversary, the latter links
to imperceptibility under L0 over a set of samples xi and
their manipulated counterparts x̃i:

∥∥∨
i(xi ̸= x̃i)

∥∥
0
≤ ϵ0,

where ∨ and ̸= are interpreted element-wise again.

3.2. Model Manipulation M2

An adversary manipulating the model, θ̃ ← A(K), may
change the model’s weights (and biases) w and may even
alter the underlying architecture A. We define the weight
manipulated model as θ̃ := (w + δw,A). For full model
manipulation, in turn, the adversary creates an independent
model from scratch θ̃ ∈ Θ without any restrictions on the
model’s architecture A.

Despite the capability to fully manipulate the model,
the adversary is constrained regarding the side effects her
changes may have. A manipulated model needs to either
(a) achieve a similar validation/testing accuracy or (b) make
the same mistakes as the original model in order to bypass
functionality tests before deployment. Based on the notion

of ϵ-accuracy and ϵ-agreement defined below, we formulate
model parameter manipulation as:

min
δw←A(K)

obj s.t. ωk :=

{
F(w+δw,A) is ϵ-accurate
Fθ, F(w+δw,A) are ϵ-agreeing,

and model manipulation as:

min
θ̃←A(K)

obj s.t. ωk :=

{
Fθ̃ is ϵ-accurate
Fθ and Fθ̃ are ϵ-agreeing .

Note that these constraints apply to the overall model
operation rather than single inputs. Moreover, we denote
Fθ̃ in the following sections for the sake of simplicity, even
if only the learned parameters w are perturbed.

ϵ-Accuracy. The manipulated model should achieve a similar
accuracy (on testing data) but may differ in classification
errors compared to the original model. Formally, we measure
the accuracy as

acc(Fθ̃) = E(x,y)∼Dtest
[Fθ̃(x) = y] .

In comparison to a benignly trained reference model, we
define a manipulated model as ϵ-accurate as follows:

Definition 1 (ϵ-accurate Model). — We denote the manip-
ulated model Fθ̃ as ϵ-accurate model regarding a benignly
trained model Fθ if its test accuracy is not significantly
lower than the accuracy of the reference model Fθ

acc(Fθ)− acc(Fθ̃) ≤ ϵ

for a limit ϵ ∈ R+.

ϵ-Agreement. If a manipulated model’s predictions match
the decisions of the original model, we denote both as having
a high fidelity. In line with related work [3, 4, 43], we define
the fidelity (and the equivalent “agreement rate”) of two
models as follows:

Definition 2 (Fidelity/Agreement Rate). — We denote the
fidelity and agreement rate between two classifiers Fθ and
Fθ̃ based on a distribution or set of samples P as

fidP (Fθ,Fθ̃) := Ex∼P [Fθ(x) = Fθ̃(x)] .

We refer to the above as local fidelity around x if P is
the neighborhood Nx of a sample x, and as global fidelity
if P is the complete feature space X . The agreement rate as
defined above is the exact inverse of the occasionally used
“disagreement rate” [89].

Definition 3 (ϵ-agreeing Models). — We denote two classi-
fiers Fθ and Fθ̃ as ϵ-globally agreeing if

1− fidX (Fθ,Fθ̃) ≤ ϵ .

Intuitively, the empirical measurement of the probability
that both models arrive at the same (potentially wrong)
prediction should be close to 1.

Other Constraints. Next to the above descriptions, the
adversary may be subject to further application-specific
constraints. Similar to prediction-only attacks that have been



shown for a vast number of corner cases. For instance, manip-
ulations may be constrained to a few bit-flips [128]; weight
perturbations need to remain below a specific threshold,
∥δw∥∞ ≤ ϵ [58]; or the attack takes effect only if the model
is compressed [165] or quantized [73]. Similar constraints
are easily conceivable for explanation-aware attacks as well.
Dataset Manipulation. A model can also be indirectly ma-
nipulated by poisoning the training data [18]. While popular
for prediction-only attacks [59, 77, 78, 145], the relevance
of data poisoning for explanation-aware attacks remains an
open research question. It is not immediately apparent how
such an attack would be instantiated by perturbing inputs
or labels only. One option is to encircle target samples
with poisoned samples to alter their explanations [195]. This
process, however, is rather costly for attacking a few samples.

Moreover, various works augment the training process
and its training data to guide the model in its decision-
making [33, 51, 132, 134, 184, 202]. An added loss term
considers the distance to a ground truth explanation per
sample as regularization. This additional regularization sup-
posedly suppresses spurious correlations by considering
domain knowledge. For instance, Chefer et al. [33] let the
model focus on the object rather than the background. The
similarity to model manipulations that facilitate explanation-
aware attacks raises the question whether the model indeed
learns to avoid spurious correlations or if the explanations
are accidentally forged.

Observation. Guiding the learning process through
ground truth explanations shares properties with
explanation-aware model manipulations. These sim-
ilarities (a) pose the risk of guidance actually being
an unwilling manipulation and simultaneously (b) may
provide insights on how to channel positive effects of
explanation-aware manipulations.

3.3. System Manipulation M3

System manipulations represent the strongest adversarial
capability that we consider in this work. Also, while input
and model manipulations are common in conventional attacks
against machine learning, the capability to manipulate the
whole system is most significant in explainable machine
learning. As an example, a potential adversarial goal is to
hide the unfair or biased reasoning of the system [3, 8, 151].
Whether the bias is introduced on purpose is secondary.
For hiding biases, the adversary may, for instance, learn a
set of unbiased surrogate models for the biased black box
model and report explanations for the surrogate that yields
the most similar prediction to the biased model [3]. With
the explanation being generated on the unbiased surrogate
model, the adversary feigns a fair decision.

We denote the complete functionality of generating a
prediction and an explanation as XAI-system S

S : X ×Θ→ Y × E ,

as depicted in Fig. 1.

We write Sf or SF if we are concerned about the predic-
tion output and Sh for the explanation output respectively.
Hence, we can describe the general optimization problem as

min
S̃←A(K)

obj s.t. ωk :=

{
S̃F is ϵ-accurate
SF and S̃F are ϵ-agreeing .

4. Attack Objectives

An adversary may target two fundamental aspects of a
learning-based system: (1) the predictions [120] or (2) the
explanations. Each target can be pursued in isolation or
in combinations, giving rise to different attack classes.
Prediction-only attacks do not consider explanations at all,
while explanation-aware attacks do.

The adversary’s objective may be to either alter, preserve,
or ignore a specific target. In the following, we briefly discuss
each option before we elaborate on the different combinations

(a) Prediction Preservation. A common objective is to pre-
serve the prediction [48, 76, 150, 177]. How well predictions
are preserved can be measured by the cross entropy loss,
denoted as LCE(S̃F (x̃), ·).
(b) Prediction Alteration. Altering the prediction alone is
extensively discussed in literature, covering input manipula-
tions [62, 113, 161] and model manipulations [65, 102, 173].
In the context of this paper, however, we do not con-
sider these details. Instead, we generalize and simply write
attF (S̃F (x̃), ·) as an attack objective on the prediction.

(c) Explanations Preservation. Here, the explanation
should be as similar to the corresponding benign explanation
as possible. For instance, to disguise an ongoing input
manipulation [198] or model manipulation [118]. We denote
this objective by dE(Sh(x), S̃h(x̃)).
(d) Explanation Alteration. Finally, the adversary may
choose to alter the explanation, for instance, to distract the
analyst through input manipulations [48] or make a model
fair while it is not [3]. In the following, we denote this attack
objective by atth(S̃h(x̃), ·).

Based on the presented criteria we categorize explanation-
aware attacks in Section 4.1. Afterwards, we elaborate
on specific instantiations of the “Explanation Alteration”
objective in Section 4.2.

4.1. Explanation-Aware Attacks

The combination of two objectives (preservation and
alteration) for two targets (prediction and explanation) yields
the three subclasses of explanation-aware attacks that we
consider in this paper. Note that the fourth option, where the
adversary preserves the prediction as well as the explanation
is not an attack [142]. Table 1 provides an overview, while
Table 2 lists corresponding related work.



TABLE 1: Prediction-only adversaries (first line, grayed out)
that do not address explanations are not considered in this
paper. Instead, we focus on explanation-aware attacks, that
we categorize by objectives in explanation-preserving (EP),
prediction-preserving (PP), and dual (D) attacks.

Name Prediction Explanation

Prediction-Only (AE/BD) alter ignore

Explanation-Preserving (EP) alter preserve

Prediction-Preserving (PP) preserve alter

Dual (D) alter alter

Explanation-Preserving Attack. The adversary attempts
to keep the explanation unchanged while attacking the
prediction, leading to the following optimization problem:

min
x̃,S̃←A(K)

attF
(
S̃F (x̃), ·

)
+ dE

(
Sh(x), S̃h(x̃)

)
.

Prediction-Preserving Attack. The adversary attempts
to keep the prediction as accurate or agreeing with the
benign prediction as possible. Simultaneously, she attacks the
explanation method, leading to the following optimization
problem:

min
x̃,S̃←A(K)

LCE

(
S̃F (x̃), ·

)
+ atth

(
S̃h(x̃), ·

)
Observation. Perfect fidelity can be easily achieved
through manipulating the XAI-system by using the
original model for the prediction output.

Dual Attack. The adversary targets both, the prediction
and the explanation. In our systematization, this attack
corresponds to the following optimization problem:

min
x̃,S̃←A(K)

attF
(
S̃F (x̃), ·

)
+ atth

(
S̃h(x̃), ·

)
.

4.2. Scope of Explanation Alteration

We proceed to specify different types of attacks that alter
explanations. In line with prior research on prediction-only
attacks [120], we use the terms untargeted and targeted, and
adapt them to explanation-aware attacks [5, 163]. Addition-
ally, we consider semi-targeted attacks that are specific to
explanation-aware attacks.

4.2.1. Untargeted Attacks. In this setting, the objective is
to yield an explanation, that should be maximally different to
the benign explanation. Hence, the set of optimal solutions is
dependent on the benign explanation and potentially contains
more than one optimal explanation. Whether this is possible,
depends on the used metric and setting. We formalize the
untargeted attack objective for altering explanations as:

attuntarh :=
1

dE
(
S̃h(x̃),Sh(x)

) .

Note that potentially every input yields a different forged
explanation, hence, the attack resembles a n:n relation from
inputs to explanations.
Example: Top-k Fooling. Minimizing the top-k overlap
between the benign explanation and the manipulated one can
be considered as an untargeted attack [71, 98]. The originally
k-most relevant features should receive as little relevance
as possible in the manipulated explanation. However, the
exact ranking of features is not crucial and, thus, multiple
explanations can meet the objective.

4.2.2. Targeted Attacks. Here, the objective is to minimize
the distance between the manipulated explanation and a fixed
target explanation rt [48, 118]. In contrast to untargeted
attacks, a single optimal solution exists, namely the target
explanation. We formalize the targeted attack objective for
altering the explanation as:

atttarh := dE
(
S̃h(x̃), rt

)
.

Observation. A targeted attack can be evaluated by
using the benign explanation of an “in-distribution”
reference sample as a target [48, 131]. This way,
the yield explanation is guaranteed to be plausible.
However, certain target explanations, like attributing
zero relevance to each feature, might be impossible.

4.2.3. Semi-Targeted Attacks. Finally, an attack can be
neither untargeted nor targeted. This is the case when the
exact target explanation depends on the input, e.g., inverting
the benign explanation [118], swapping the explanations of
two classes [71], or suppressing the relevance at a specific lo-
cation but keeping the remaining explanation intact [159]. For
attacking a single sample there is no difference to a targeted
attack. However, for multiple instances semi-targeted attacks
may implement arbitrary functions in E . We generalize semi-
targeted attacks by a function µ : E × X → E that is
applied to the benign explanation yielding a sample-specific
target explanation:

attsemi
h := dE

(
S̃h(x̃), µ

(
Sh(x),x

))
.

To emphasize the importance of this setting for explanation-
aware attacks, we discuss two examples found in literature.
Example: Inverting Explanations. A model can be manipu-
lated to yield inverted explanations, whenever a backdooring
trigger is present on the input [118]. That is, regions with high
relevance in the benign explanation receive low relevance in
the attacked explanation and vice versa.
Example: Location Fooling. For input manipulations, the
adversary may only be allowed to change a small region of
the input only [22]. Without further provisions this region
contributes highly to the prediction and an explanation
method would highlight the manipulated region, revealing
the attack. To go unnoticed, the manipulated area can be
penalized for high absolute relevance values when generating
the adversarial input [159].



TABLE 2: Works on explanation-aware attacks categorized by threat model (cf. Section 3), type of attack (cf. Section 4.1),
and attack scope (cf. Section 4.2) including untargeted ( ), semi-targeted ( ) and targeted ( ) attacks. Additionally, we
specify whether the corresponding paper attack white box (□) or black box (■) post-hoc explanation method.

Paper Threat Model Attack Type Scope XAI Methods

Input Model System EP PP D □ ■

A
tta

ck
s

Zhang et al. [198]  – –  –  – – □ ■
Dombrowski et al. [49]  – – –  – – □ –
Kuppa and Le-Khac [86]  – – –   – – □ –
Dombrowski et al. [48]  – – –  – – – □ –
Ghorbani et al. [60]  – – –  – – – □ –
Fan et al. [53]  – – – –  – – □ –
Carbone et al. [28]  – – – –  – – □ –
Alvarez-Melis and Jaakkola [7]  – – –  – – – □ ■
Wang et al. [176]  – – – –  – – □ –
Tamam et al. [162]  – – –  – – – □ –
Ivankay et al. [76]  – – –  – – – □ –
Sinha et al. [150]  – – –  – – – □ ■
Abdukhamidov et al. [1]  – – – –  – – □ ■
Sarkar et al. [140]  – – –  – – – □ –
Subramanya et al. [159]  – – – –  – – □ –
Tang et al. [163]  – – –  – – □ –
Heo et al. [71] –  – –  – □ –
Wang et al. [177] –  – –  – – □ –
Ali et al. [6] –  – –  – – – □ ■
Zhang et al. [195] –  – –  – – – □ –
Slack et al. [153] (a) –  – –  – – – – ■
Slack et al. [153] (b)   – –  – – – □ –
Slack et al. [152]   – –  – – – □ –
Noppel et al. [118]   –    □ –
Fang and Choromanska [54]   – –  – – □ –
Viering et al. [170]   – –  – – – □ –

Fa
ir

w
as

hi
ng

Anders et al. [8] –  – –  – – – □ –
Aı̈vodji et al. [3] – –  –  – – – – ■
Aı̈vodji et al. [4] – –  –  – – – – ■
Lakkaraju and Bastani [88] – –  –  – – – – ■
Slack et al. [151] – –  –  – – – – ■

5. Explanation-Aware Robustness Notions

As discussed in the previous section, robustness against
prediction-only attacks and explanation-aware attacks is
strongly related. In this section, we zoom in on the robustness
of post-hoc explanations and systematize the relation of
various notions of robustness against explanation-aware
attacks. This formalization serves as an important building
block toward certifiable robust XAI-systems.

We focus on robustness at inference time with regard
to an input x and its worst-case counterpart x̃. However,
a preceded model manipulation can benefit the adversary.
In Section 5.1, we define templates for two families of
robustness notions and introduce different constraints and
restrictions for explanation-aware robustness. Combinations
of restrictions and constraints allow us to define notions of
varying strictness, which we then use to build a hierarchy
of robustness notions in Section 5.2. On this basis and the
gained understanding of robustness, we provide an outlook
on how robustness can be guaranteed in Section 5.3.

5.1. Definitions

A robustness notion is defined by two conjugated sets,
namely the restrictions (Section 5.1.1) and the constraints
(Section 5.1.2). Both sets operate on input tuples (x, x̃),
making recourse to the associated predictions and explana-
tions. To name the notions, we use R|C as a template where
R stands for the restrictions (joined by +) and C for the
specific constraint. Given this name, we use two robustness
definitions with different scopes:

Definition 4 (R|C-Robustness around x). — We denote a
system S as R|C-robust around x if

∀x̃ ∈ X restrictions(x, x̃)→ constraints(x, x̃) .

This definition models an input’s worst-case manipulation
and can only be achieved or not achieved. Achieving the
above robustness notion around any input x yields the
following stronger and more general definition:



Definition 5 (R|C-Robustness). — We denote a system S
as R|C-robust if

∀x, x̃ ∈ X restrictions(x, x̃)→ constraints(x, x̃) .

To emphasize the distinction to robustness around x we
occasionally denote this definition as general robustness.
While robustness can also be measured as a scalar value, we
refrain from doing so for the sake of simplicity. Hence, this
general robustness can again be achieved or not achieved.
In Appendix A, we review different variations for more fine-
grained measures [28]. Moreover, we assume (X ,dX ) and
(E ,dE ) to be metric spaces with their associated metric. This
is applicable in most applications. However, for two specific
findings, we additionally require fully-connectedness or
convexity. We emphasize that both can be assumed whenever
the space X consists of floating point numbers only.

In the following, we describe important constraints and
restrictions used in literature to define explanation-aware ro-
bustness. In Appendix B, we provide an overview table of the
constraints and restrictions we define in the following. Some
of these definitions require additional parameters, e.g., a
limit ϵ, a perturbation δ, or a Lipschitz constant K, which are
always fix and part of the notion itself. The same holds true
for the concretely applied metrics which are also considered
parameters of the notion. Consequently, two notions with
different parameters are considered different notions.

5.1.1. Constraints. Below, we define three constraints on
explanations, common in literature to define explanation-
aware robustness.

LIPdE ,dX ,K : Lipschitz Continuity. The Lipschitz continuity
requires the difference between two explanations to be less
or equal to a fixed multiple of their distance. Hence, we
define the Lipschitz continuity constraint as follows:

∃γ ∈ R+ dE
(
hθ(x), γhθ(x̃)

)
≤ KdX (x, x̃) .

The positive scaling factor γ ∈ R+ ensures that we only
compare relative differences in the explanations [163]. Note
that this can also be modeled as a requirement on the
explanation methods producing normalized explanations.
Being Lipschitz continuous therefore is equivalent to having
a bounded gradient. The smallest such bound is denoted as
the Lipschitz constant K. We abbreviate notions that require
Lipschitz continuity by LIPdE ,dX ,K .

EXPLSIMdE ,ϵ: Explanation Similarity. We require the
maximal difference between two explanations to be bounded
by a fixed ϵ, formally given as

∃γ ∈ R+ dE(hθ(x), γhθ(x̃)) ≤ ϵ .

We denote such notions as EXPLSIMdE ,ϵ.

EXPLEQ: Explanation Equivalence. Equivalence is a
special case of the EXPLSIMdE ,ϵ constraint with ϵ = 0.
We require

∃γ ∈ R+ hθ(x) = γhθ(x̃) .

The transitivity of the equivalence relation makes this con-
straint extremely strict in general robustness according to

Definition 5. Hence, it is mostly applied together with a
proper restriction to subspaces. It is mainly used for certified
robustness as we discuss in Section 5.3. We denote notions
that require explanation equivalence by EXPLEQ.

5.1.2. Restrictions. Restrictions define the subspace of
tuples for which the constraints need to be satisfied. In
the following, we motivate three different instantiations.

CLSEQ: Classification Equivalence. Suppose a model
predicts two nearby samples as the class “dog” and “cat”,
respectively, despite their proximity. This may happen if
the model is vulnerable to prediction-only attacks or the
samples are simply close to the decision boundary. If the
predicted class changes, we have to allow larger changes
in the explanation as well because it answers a different
question: “Why is this cat?’’ rather than “Why is this a
dog?”. Consequently, we restrict to input tuples with identical
predictions instead:

Fθ(x) = Fθ(x̃) .

We denote notions that apply this restriction by CLSEQ.
Note that these subspaces are strictly smaller for every non-
constant Fθ, but also neither necessarily convex nor fully-
connected, even if X is convex. This fact is crucial for the
hierarchy of robustness notions we present in Section 5.2.

LOCdX ,δ: Local Vicinity. Another restriction is to only
consider tuples of nearby inputs:

dX (x, x̃) ≤ δ ,

where δ denotes the fixed limit of the distance. We denote
those notions as LOCdX ,δ .

No Restrictions. The last option is to have no restriction
at all. Obviously, this is only reasonable if the constraint
somehow considers the distance between the inputs, e.g.,
LIPdE ,dX ,K . We consider this setting the default and use no
specific symbol to denote it.

5.2. Hierarchy of Robustness Notions

Next, we set up the hierarchy of robustness notions
and provide intuitions on the relations between them as
a starting point to unify the field. We visualize the resulting
implications in Fig. 2. For the sake of the notion’s simplicity,
we drop superscripts whenever possible and not relevant
for understanding. For instance, we write LIP instead of
LIPdE ,dX ,K . Further, we assume reasonable assignments of
the respective parameters, like the used distance metrics.

Arrows denote a logical implication from a stricter to
a weaker notion, and the stricter the notion, the higher
the robustness against attacks. The two dashed arrows are
only valid for general robustness and require additional
assumptions, like the convexity of X . Intuitively they then
arise from the transitive properties of EXPLEQ and LIP. The
gray boxes indicate notions that are too strict to be relevant:
❶ EXPLEQ-robustness requires every two explanations to
be equivalent, which is not useful in practice, of course.
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Figure 2: Hierarchy of explanation-aware robustness notions. Arrows denote implications from strict to a weak notions:
the stricter the notion, the higher the robustness. Dashed arrows are only valid for general robustness, and require fully-
connectedness or even convexity. Dotted arrows are only valid for specific combinations of parameters. Notions ❶, ❷, and
❸ are considered too strict to be relevant.

❷ EXPLSIM-robustness requires that explanations differ only
slightly. Hence, explanations must be either pairwise similar
(general robustness) or every explanation must be similar
to hθ(x) (robustness around x). Both limits the usability of
explanations dramatically.

Observation. According to the triangle inequality every
system that is EXPLSIMdE ,ϵ-robust around x is also
generally EXPLSIMd,2ϵ-robust.

❸ CLSEQ|EXPLEQ-robustness can only be satisfied if
there is only one explanation per class. CLSEQ|EXPLEQ-
robustness around x is weaker and requires each sample of
the class Fθ(x) to produce the same explanation as x. We
consider both as not relevant in practice.

While some other notions are also very strict, they might
still be helpful for further analysis. We discuss their relation
and relevance in the following.

Details on the Relations. EXPLEQ-robustness and
LOC|EXPLEQ-robustness are equivalent if X is fully-
connected. The reason is that the equivalence relation tran-
sitive. Interestingly, LOC +CLSEQ|EXPLEQ-robustness and
CLSEQ|EXPLEQ-robustness are not equivalent because the
subspace restricted by CLSEQ might not be fully-connected
even if X is fully-connected. The other way around the
implication trivially holds.

Our argumentation for the equivalence between LIP-
robustness and LOC|LIP-robustness is slightly different and
even requires X and E to be convex.

Lemma 1. — Given two convex metric space (X , dX ) and
(E , dE). Every LOCdX ,δ |LIPdE ,dX ,K -robust system (Fθ, hθ),
is also LIPdE ,dX ,K-robust:

LOCdX ,δ|LIPdE ,dX ,K ⇒ LIPdE ,dX ,K .

Proof. We assume two points x0,x2 ∈ X such that
dX (x0,x2) > δ. W.l.o.g. we assume dX (x0,x2) < 2δ. As
X is convex, there exists an equidistant point x1 ∈ X , that

lies directly between x0 and x2 and satisfies the triangle
equation with equality:

dX (x0,x2) = dX (x0,x1) + dX (x1,x2) (1)

and
dX (x0,x1) < δ and dX (x1,x2) < δ .

Hence, x1 lies in the δ-neighborhood of x0 and x2. Due to
the fact that the system is LOCdX ,δ|LIPdE ,dX ,K-robust, we
can pose the following two equations:

∃γ dE(hθ(x0), γhθ(x1)) ≤ K · dX (x0,x1)
∃γ dE(hθ(x1), γhθ(x2)) ≤ K · dX (x1,x2)

Adding both together, applying the triangle equation, and
Eq. (1) results in

∃γ dE(hθ(x0), γhθ(x2)) ≤ K · dX (x0,x2)

Intuitively the proof relies on X being convex and the
norm satisfying the triangular inequality with equality for
the existing equidistant input in the center. Note that this
argumentation does not hold for robustness around a fixed x.
Further CLSEQ|LIP-robustness implies LOC+CLSEQ|LIP-
robustness, but not the other way around as the CLSEQ
subspace might not be convex.

Lemma 2. — Every LOCdX ,δ|LIPdE ,dX ,K-robust system
(Fθ, hθ) is also LOCdX ,δ|EXPLSIMdE ,ϵ-robust for ϵ ≤ Kδ:

LOCdX ,δ|LIPdE ,dX ,K ⇒ LOCdX ,δ|EXPLSIMdE ,ϵ .

Proof. In order to show A→ B ⇒ A→ C it is sufficient
to show that A→ (B → C). Hence, we emphasize that the
following

∃γ dE(hθ(x0), γhθ(x1)) ≤ KdX (x0,x1)
⇒

∃γ dE(hθ(x0), γhθ(x1)) ≤ ϵ



holds for any choice of x0,x1 ∈ X if

ϵ ≥ KdX (x0,x1) .

Under the restriction dX (x0,x1) ≤ δ this holds exactly if

ϵ ≥ Kδ .

Intuitively, if hθ(·) is Lipschitz continuous within a
certain radius δ, then the maximal explanation dissimilarity
within the same ball is ϵ = Kδ. The same idea applies for:

LOC+CLSEQ|LIP ⇒ LOC+CLSEQ|EXPLSIM

In the other direction, however, both last findings do not
apply. Intuitively speaking, the reason is that LIPdE ,dX ,K

requires an infinitesimal small difference in the explanations
of infinitesimal nearby inputs. Hence, the required difference
can always be forced to be below any ϵ by picking two inputs
that are just close enough together. Further, for EXPLSIMdE ,ϵ

the transitivity argument, as applied above, does not hold
and hence

EXPLSIM ⇒ LOC|EXPLSIM
CLSEQ+EXPLSIM ⇒ LOC+CLSEQ|EXPLSIM

holds, while it does not necessarily hold the other way around.
The argumentation for the relations within robustness around
x are similar, except for the fact that transitivity can not be
applied. In Fig. 2, we indicate relations that only hold for
general robustness, and fully-connected or convex spaces as
dashed arrows. Not explicitly shown relations are considered
as trivial.
Existing Notions in Literature. Our hierarchy arises from
the complete combination of the building blocks proposed
in Section 5.1. Since these notions have varying relevance to
the community, in the following, we provide links to notions
proposed in related work:
(a) Wang et al. [181] propose LIP and LOC|LIP-robustness
around x as Attribution(al) Robustness,

(b) Ivankay et al. [75, 76] and Sarkar et al. [140] use the
same term but refer to LOC +CLSEQ|EXPLSIM-robustness
around x.

(c) Levine et al. [98] work with the LOC|EXPLSIM-
robustness around x, but without naming it.

(d) Dombrowski et al. [48] prove an upper bound on ϵ for
LOCdX ,δ +CLSEQ|EXPLSIM-robustness around x using the
maximal principle curvature. They choose the parameter δ
such that the union of the neighborhood around the fixed x
and the hyperspace of equal classification is fully-connected.

Observation. Inferring robustness from robustness
around x is in general non-trivial. Determining a
reasonable δ that holds around any x can be impossible,
as illustrated in Fig. 3. Intuitively speaking, the fully-
connectedness forces δ to be upper bounded at point a,
but also lower bounded at point b. The only solution
is δ = 0, which however is an unreasonable notion.

a b

Figure 3: Geometric intuition in a two-class problem that
mapping robustness around x to robustness is not trivial in
general. The system is LOCdX ,δ+CLSEQ|EXPLSIM-robust
around a and b for different values of δ. Finding a com-
mon value δ to satisfy general LOCdX ,δ+CLSEQ|EXPLSIM-
robustness is impossible.

Moreover, various authors motivate that explanations
should only be compared by rank and hence the top-k
intersection or the Kendall correlation [81] should be consid-
ered [28, 35, 60, 75, 98, 140, 163, 174, 175]. We emphasize
that k in this case is way bigger than a usual norm limit ϵ
and also that the distance metrics’ required properties might
not be satisfied. Still, those ideas can be mapped to versions
of EXPLSIMdE ,ϵ or EXPLEQ-robustness.

Link to Attack Objectives. Our robustness notions are
linked to specific attack objectives (Section 4). Let’s consider
a concrete example for clarification: A defender that expects
a prediction-preserving adversary may strive for a notion
with the CLSEQ restriction (right side of Fig. 2) because
the considered attack keeps the classification intact anyway.
Consequently, explanation-aware robustness needs to be
preserved within the same class only.

However, these CLSEQ notions are too weak to simulta-
neously counter a dual adversary (Table 1), who is willing to
change the classification as well. Consequently, the defender
should rather pick the notions without the CLSEQ restriction
(left side of Fig. 2). But, any adversary that strives for
maintaining the benign explanation, while attacking the pre-
diction (explanation-preserving attacks) still outmaneuvers
the above defender. Even worse, by implementing any of
our robustness notions, the defender actually supports the
adversarial objectives of an explanation-preserving adversary.

To counter explanation-preserving adversaries additional
requirements are necessary, e.g., explanations should indicate
when a class flip occurs. This behavior can be trivially
achieved by requiring the explanation’s changes to exceed a
certain threshold whenever x and x̃ yield different predictions.
Unfortunately, this would then benefit an untargeted dual
adversary, leaving the defender in yet another dilemma.

Observation. A defender can adjust to expected adver-
saries, fulfilling a specific robustness notion. However,
the required properties might be conflicting for multiple
adversaries with diverging objectives.

This observation leads to the following research question:

Open RQ 1. To which extent do different threat
models and attack objectives conflict in their required
robustness notions?



5.3. Robustness Guarantees

So far, we have identified various robustness notions.
However, we aim for guarantees that a certain notion is
satisfied, i.e., we want Certified Robustness. Instead of simply
proving a notion, most often the exact guaranteed notion
parameters (K, ϵ, or δ) are calculated in practice as every
instantiation of the parameters yields a different notion. In
the following, we present two examples of how this goal
can be accomplished in practice.

Example: Linear Regions. Given an input x, the system
operator can calculate the maximal norm ball around x
that fits within the corresponding linear region of a ReLU
network [93]. Therefore, the active linear segments of the
activation function of each neuron are collected in so-called
Activation Patterns [125]. Each activation pattern corresponds
to one linear region of the decision surface. The trick
is that each region is convex, as it is encircled by lines.
Consequently, the maximal norm ball that fits in can be
approximated efficiently for L1 and L2 [93]. However, this
guarantee does not apply for every explanation method. In
fact, the only guarantee is that the gradient is constant within
the norm ball. As a matter of fact, for the Simple Gradients
explanation method this corresponds to a constant expla-
nation and hence a guarantee for LOC|EXPLEQ-robustness
around x.

Open RQ 2. How to provide guarantees for the
robustness around x for explanation methods, other
than gradient-based methods?

Example: Randomized Smoothing. Levine et al. [98]
demonstrate a probabilistic robustness guarantee via random-
ized smoothing [40]. Therefore, the model is sampled with
noisy inputs and depending on the results an overlap of the
top-k features can be probabilistically guaranteed in a norm
ball with fixed radius. This matches a LOCdX ,δ|EXPLSIMdE ,ϵ

notion, where δ is fixed, and the explanation distance is set
to the guaranteed top-k overlap.

Open RQ 3. How to generalize guarantees from
randomized smoothing to other dissimilarity metrics
and explanation methods, e.g., other than gradient-
based methods?

6. Robust Models for XAI-Systems

The research field on robust models is rather novel, albeit
being heavily inspired by works on prediction-only attacks.
We start by discussing the sanitization and validation of
training data (Section 6.1) and the model (Section 6.2). Then
we present certain robust model architectures (Section 6.3)
and elaborate on possibilities to increase the robustness
during training (Section 6.4).

6.1. Training Data Validation and Sanitization T1

Errors, spurious correlations, and intentionally poisoned
data can lead to misbehaving models [9, 38, 92, 158]. Hence,
for training a model from scratch, the training data needs
to be validated first. Unfortunately, we are not aware of
any work that discusses data sanitization and validation
specifically to prevent explanation-aware attacks. To prevent
prediction-only attacks, in turn, a huge body of work proposes
to sanitize and validate data [34, 157, 167, 200]. Some of
them, however, propose techniques based on explanation
methods [9, 37, 47, 92, 179].

Example: Class Artifact Compensation. Explanations are
generated for each training sample, clustered, and aggregated
per cluster to highlight regions that cause spurious correla-
tions [9]. This method heavily relies on the correctness of
explanations, which raises the question:

Open RQ 4. To what extent can explanations be fooled
in a data manipulation setting to bypass sanitization?
In particular, bypassing explanation-based data saniti-
zation techniques, seems to be a practicable goal.

6.2. Model Sanitization and Validation T2

Downloaded models and models that have been trained
by MLaaS providers need to be sanitized and validated
before deployment [54, 71, 71, 118, 152, 153]. However,
this process requires additional resources like a small dataset
that is guaranteed to be clean [101].

Sanitization of Manipulated Models. Model sanitization
should be applied prophylactically whenever the integrity of
the training process is questionable. The benign performance
is barely affected [173]. To the best of our knowledge, there is
no work on the sanitization specifically for explanation-aware
attacks. However, many authors discuss sanitization to pre-
vent prediction-only attacks [99, 101, 185, 193]. Concretely,
Liu et al. [101] propose an alternation between finetuning
and pruning steps on clean data, denoted as finepruning.
That way, the model is forced to forget a backdooring trigger
it learned previously. We expect these techniques to also
remove injected explanation-aware-backdoors. However, its
effectiveness against prediction-preserving model manipula-
tions is not clearly answerable.

Detecting Manipulated Models. Prediction-preserving ad-
versaries resemble a new type model manipulation threat
specific to XAI-systems, which is not present in prediction-
only settings [71, 152, 153]. For instance, Heo et al. [71]
demonstrate that the explanations of two classes can be
swapped or, alternatively, a model can be manipulated to
always show a specific target explanation, for any input.
However, explanation-aware backdooring attacks have been
proposed in all three distinct flavors of explanation-aware
attacks by various authors [15, 54, 117, 118]. However, to the
best of our knowledge there is no work that deeply investi-
gates the detection of such explanation-aware attacks. Albeit,



there are plenty of works on the detection of prediction-only
attacks [34, 57, 74, 168, 173, 185, 188, 189]. They identify
anomalies in weight distributions [57, 185] and neuron
activation [34], or measure distances to potential target
classes [173]. We strongly assume that similar techniques
would work for explanation-aware model manipulations as
well. We pose the following open research question:

Open RQ 5. To what extent are recent model saniti-
zations and validations effective against explanation-
preserving, dual, and in particular, prediction-
preserving attacks?

6.3. Robust Architectures T3

Every robust XAI-system starts with choosing a robust
model architecture. Recent research shows that some design
choices favor robustness and explainability more than oth-
ers [27, 28, 48, 49, 136]. In the following, we briefly present
two directions.

Smooth Activation Functions. The ReLU activation func-
tion induces kinks in the decision surface whenever the
zero-line is crossed. These kinks lead to a sudden increase
in gradients that many explanation methods heavily pick up
on. Smooth approximations of ReLU, e.g., the Softplus-β,
can reduce kinks and allow for a more smooth transition in
explanations for similar inputs [48, 49]. The β parameters
specifies how close ReLU is approximated: Infinite β equals
ReLU, while low values render loose approximations [48].

Bayesian Networks. Recent work suggests that Bayesian
neural networks provide significantly more robustness against
adversarial attacks [27, 28]. According to Carbone et al. [28],
this is also true for explanation-aware attacks and Bykov
et al. [24] demonstrate how these bayesian networks can be
explained with LRP. Supplementing the importance scores
with uncertainty scores helps to make the explanation more
robust, or at least inform the user about a high uncertainty.

6.4. Robust Training T4

Non-smooth decision surfaces can induce significant
gradient changes, thus a small principle curvature is a strong
indicator for a robust model [49, 114]. Ideally, we aim for
a small curvature during the training process [49]. In the
following, we present various training approaches leading to
models more robust against explanation-aware attacks.

Double Backpropagation. Double backpropagation refers
to penalizing large second derivatives and is known for
improving generalization [50, 72]. It is formalized by adding
a λ-weighted term λ∥∂

2fθ
∂x2 ∥ to the loss function. A major

disadvantage is the high computational effort, though.

Regularization of the Hessian Matrix. The Hessian matrix
H contains the second order partial mixed derivatives and
defines the local curvature of the decision surface. The
integral of the Frobenius norm of the Hessian ∥H∥F on

the path between x and x̃ bounds the difference in their
explanation [49]:

dE(hθ(x), hθ(x̃)) ≤
∫ +∞

−∞
∥HF (τx(t))∥F dt ,

where τ defines a path between x and x̃ such that τ(−∞) =
x and τ(+∞) = x̃. This bound is shown for simplified
Simple Gradients explanations [147], without aggregation
or absolute values [49]. Moreover, the fundamental theorem
of calculus for line integrals needs to hold for hθ [160].
However, the Hessian matrix is expensive to calculate,
making an approximation necessary [49].
Regularize Weights and Weight Decay. This technique is
proven to improve the generalization of neural networks [69,
85, 183, 194]. It adds a λ-weighted penalization for the norm
of the weights, formalized as λ∥w∥, where w represents the
weight components of a model’s parameters. Regularizing the
weights of a neural network using the Frobenius norm ∥·∥F
amounts to bounding H. This has the effect of smoothing the
decision surface and makes attacks against gradient-based
explanations harder [49].
Regularizing the Largest Eigenvalues. Smooth Surface
Regularization (SSR) [181] can be used to minimize the
distance between explanations of nearby points. This is done
through penalizing the largest eigenvalue of the H with
respect to all data samples from a training distribution. The
authors formalize this as a λ-weighted term in the loss
function: λmaxi |ξi|. Moreover, Singla et al. [149] propose
a closed-form solution to efficiently find the eigenvalues in
ReLU networks and demonstrate that the largest eigenvalue
is almost parallel to the gradient of the loss.
Adversarial Training for Explanations (ATEX). Vanilla
adversarial training for explanations is computational expen-
sive due to the necessary multiple derivations. ATEX [163]
uses an efficient way to approximate the required changes
by relying on the fact that the prediction and the explanation
changes are orthogonal to each other.
Explanation-Based Optimization (ExpO). Plumb et al.
[122] generalize the loss function to include a λ-weighted
term λR(x,Nx) that depends on the neighborhood of x.
They propose two instantiations of R. ExpO-Fidelity defines
R(x,Nx) as

R(x,Nx) := Ex′∼Nx [(Fθ(x
′)−wTx′ + b)2] ,

where w and b are weights and biases learned on Nx. Hence,
it measures how well each neighborhood can be approximated
linearly. ExpO-Stability defines R(x,Nx) as

R(x,Nx) := Ex′∼Nx [∥hθ(x), hθ(x
′)∥22] .

It measures how stable the explanations are in Nx. Summa-
rizing, we pose the following research question:

Open RQ 6. What are effective and efficient regular-
ization techniques for general explanation methods?
How can we reduce the required computational efforts
of current approaches?



7. Robust Operation of XAI-Systems

Training time defenses ideally are complemented by
defenses and monitoring during operation [124]. Hence, we
consider the sanitization and detection of malicious inputs
as initial defense (Section 7.1). Additionally, potentially
malicious inputs can be collected and used to re-validate the
model continuously during operation (Section 7.2). Finally,
explanations can be used to verify the input-output behavior
of black box systems (Section 7.3).

7.1. Input Sanitization and Validation O1

An upstream algorithm can intercept and sanitize any
submitted input and, depending on the application scenario,
detect and reject inputs with malicious components [80, 166].
We detail both approaches in the following.
Sanitization of Malicious Inputs. To the best of our
knowledge, no sanitization has been evaluated specifically
for explanation-aware attacks yet. However, research on
its effectiveness against prediction-only attacks is om-
nipresent [19, 64, 116, 186]. Proposed techniques apply
denoising or partial impainting through generative models,
e.g., variational autoencoder decoder (VAE) [64], gener-
ative adversarial models (GAN) [70], or diffusion mod-
els [19, 116, 186]. In the hope of generalizing on future
adversarial perturbations, the model is trained to reconstruct
images from diverse perturbations, including adversarial ones.
As explanation-aware attacks require a higher or comparable
level of perturbation, we assume a great transferability
towards explanation-aware attacks [20]. Note that we exclude
methods from this assumption that heavily rely on robust
explanations. As an example, Februus [47] uses GradCAM
explanations to determine the position of backdoor triggers,
and thus can be bypassed by explanation-aware attacks [118].
Detecting and Rejecting Adversarial Inputs. Detection
of adversarial inputs can be based on three (potentially
overlapping) approaches: (1) Indicators of known attack
classes in the input [42, 63, 95, 105, 107, 135], (2) effects
of extracted components on clean data [37], and (3) side
effects during processing, e.g., uncommon activations in inter-
mediate layers [164, 178]. We assume the same detectability
for explanation-aware attacks, except for detection techniques
that utilize explanations for that task [37, 47, 55, 80, 178].
Adversaries that are aware of the vulnerabilities of expla-
nations might easily evade these detection techniques. On
the other side, a strong robust explanation can contribute
significantly to detecting malicious inputs, e.g., explanations
highlight backdooring trigger [37, 118]. Summarizing this
subsection, we pose the following open research question:

Open RQ 7. How do the introduced techniques perform
in sanitizing and detecting explanation-aware input
manipulations, specifically for prediction-preserving
attacks, where only the explanation is attacked? To
what extent can explanation-aware attacks be utilized to
bypass recent explanation-based detection techniques?

7.2. Continuous Model Monitoring O2

In addition to the input sanitization and validation, the
model must be monitored during deployment and regularly
re-validated with the potentially malicious inputs [168]. The
difference to O1 is that here we do not decide on single
individual inputs, but sets of potentially malicious inputs
collected over time. The model may be corrupted early on
during training already by full or partial replacement [124]
or even hardware side channels [128].

7.3. Validating the Input-Output Behavior O3

The input-output behavior of a prediction-only system
only consists of the input and the one dimensional label. In
contrast, XAI-system have an additional high-dimensional
output in form of the explanation. This output gives outsiders
in general more information to audit the system, e.g., verify-
ing its fairness [30, 87, 96]. But also other properties like
the used model architecture, if the explanations are fitting
to the decision-making, or the number of neural networks
might be inferable by querying the XAI-system properly. We
pose the following research question:

Open RQ 8. To what extent and how can public
authorities audit and verify the inner working of an
explainable system to ensure a fair decision-making?

8. Robust Explanation Methods

Beside using robust models and monitoring the system
during operation, the robustness of the explanation method
itself must be enhanced [8, 131, 181]. In the following, we
present different directions.

Smooth Adaptations. Smoothed explanations are less vul-
nerable to input manipulations [5, 48] and can be yield
in various ways. SmoothGrad aggregates the gradients over
multiple noisy inputs in the vicinity of the input [154]. Beside
Gaussian noise, like in SmoothGrad, others propose to use
uniform noise, denoted as UniGrad [181]. NoiseGrad [25],
in turn, stochastically perturbs the model weights instead
of the inputs. In practice, there exists a runtime trade-off
inflicted by the number averaged samples. These approaches
are applicable to every explanation method and model type.

However, using a smooth activation functions as dis-
cussed in Section 6.3 are advantageous over smooth adap-
tions [5, 48]. Smooth activation only require one forward
and backward pass through the model. On the other hand,
smooth adaptions require one forward and backward pass
per sample or weight perturbation.

Adversarially Trained Surrogate Models. Lakkaraju et al.
[90] propose a black box method that additionally performs
adversarial training on the surrogate model. As a result, the
surrogate model will resemble the black box model’s func-
tionality for out-of-distribution samples and, thus, becomes
more robust.



Ensembles of Attribution Methods. Instead of using a sin-
gle explanation method, ensembles of (multiple) aggregated
explanation methods are more robust against attacks [131].
This is because attacks are usually targeted toward specific ex-
planation methods and are generally not transferable to other
explanation methods. A certain degree of transferability can
be observed between methods from the same family or if the
attack is specifically targeting the transferability [118, 131].

Tangent Space Projections (TSP). Tangent space projected
explanations post-process explanations by projecting them
along tangential directions of the data manifold [8]. This
method is theoretically motivated by differential geometry
and manifold learning and motivated by the fact that the
relevant training data only lie on a low-dimensional small
submanifold in the manifold of all possible data points. As
these TSPs only rely on the dataset, they are also effective
against model manipulations.

Certifiable Robustness. Research on the robustness of
explanation methods focuses on the gradient ∇xFθ(x) for
which many interesting results have been found [48, 49, 163].
However, these results do not directly apply to explanation
methods used in practice due to subtle differences. As an
example, Simple Gradients [147] uses the gradient’s absolute
value and aggregates it to yield one importance score per
pixel. Also, while all gradient-based explanations use the
model’s gradients, it is not clear whether they are equally
vulnerable. Introducing axioms for explanation methods, such
as sensitivity, completeness, and implementation invariance,
enables us to generalize robustness better. One primary
result is the importance of the completeness axiom which
corresponds to the fundamental theorem of line integrals∫ +∞

−∞
∇hθ(τ(t)) dt = hθ(x)− hθ(x̃) ,

where τ is again a path from x to x̃. Many recent robustness
proofs rely on this axiom to hold [20, 35, 75, 148]. However,
more axioms exist, such as relevance conservation, positivity,
and continuity [12, 110] and many explanation methods have
been proposed without pointing out which axioms they satisfy.
This drawback hinders research and renders the provided
guarantees inaccessible.

Observation. Robustness proofs need to be decou-
pled from specific explanation methods. Fundamental
axioms such as sensitivity, completeness, and imple-
mentation invariance [160], or relevance conservation,
positivity, and continuity [12, 110] can serve as building
blocks for describing explanation techniques.

While the implications of an explanation method’s
completeness are well studied already, other axioms have
not been investigated in this intensity yet. Explanation
methods need to be mapped to the axioms they satisfy,
specifying the applying conditions. These axioms then allow
to pinpoint the robustness guarantees for the explanation
method at hand in a specific setting.

9. Conclusion

We systematize attacks against post-hoc explanation meth-
ods along the adversary’s capabilities, constraints, and objec-
tives. We reveal relations of different classes of explanation-
aware attacks and even find similarities to applications that
use explanations to improve learning. Interestingly, these
works use techniques related to data poisoning for model
manipulation, raising the question whether and how they
correlate.

Moreover, we formalize robustness notions for post-hoc
explanations that (a) highlight the requirements for defenses
and (b) enable the community to unify their efforts. Our
taxonomy of existing defenses shows that plenty of research
on mitigating prediction-only attacks exists, but methods
for fending off explanation-aware attacks are scarce. It is
not immediately apparent whether defenses for prediction-
only attacks work for explanation-aware attacks out-of-the-
box. Perhaps even more importantly, the community actively
works on developing robust post-hoc explanation methods
and investigates the certified robustness of explanations.
Both directions are auspicious as many underlying concerns
in applying explanations can be addressed if explanations
methods are provable robust and reliable.

We are confident that our systematization and the made
observations, the hierarchy of robustness notions as a foun-
dation for understanding robustness requirements, and the
highlighted future research directions will help advance the
field toward robust post-hoc explanation methods.
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G. Montavon, “Higher-order explanations of graph neural networks via relevant
walks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 11, pp. 7581–7596, 2022.

[142] J. Schneider, C. Meske, and M. Vlachos, “Deceptive AI explanations: Creation
and detection,” in Proc. of the International Conference on Agents and Artificial
Intelligence (ICAART), vol. 2, 2022, pp. 44–55.

[143] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, 2002.

[144] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
“Grad-CAM: Visual explanations from deep networks via gradient-based localiza-
tion,” International Journal of Computer Vision, vol. 128, no. 2, 2020.

[145] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and
T. Goldstein, “Poison Frogs! targeted clean-label poisoning attacks on neural
networks,” in Proc. of the Annual Conference on Neural Information Processing
Systems (NeurIPS), 2018, pp. 6106–6116.

[146] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features through
propagating activation differences,” in Proc. of the International Conference on
Machine Learning (ICML), 2017, pp. 3145–3153.

[147] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks:
Visualising image classification models and saliency maps,” in Proc. of the
International Conference on Learning Representations (ICLR) Workshop Track
Proceedings, 2014.

[148] M. Singh, N. Kumari, P. Mangla, A. Sinha, V. N. Balasubramanian, and
B. Krishnamurthy, “Attributional robustness training using input-gradient spatial
alignment,” in Proc. of the European Conference on Computer Vision (ECCV),
vol. 12372, 2020, pp. 515–533.

[149] S. Singla, E. Wallace, S. Feng, and S. Feizi, “Understanding impacts of high-order
loss approximations and features in deep learning interpretation,” in Proc. of the
International Conference on Machine Learning (ICML), vol. 97, 2019.

[150] S. Sinha, H. Chen, A. Sekhon, Y. Ji, and Y. Qi, “Perturbing inputs for fragile
interpretations in deep natural language processing,” in Proc. of the Fourth
BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for
NLP (BlackboxNLP@EMNLP), 2021.

[151] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, “Fooling LIME and
SHAP: Adversarial attacks on post hoc explanation methods,” in Proc. of the
AAAI/ACM Conference on AI, Ethics, and Society (AIES), 2020, pp. 180–186.

[152] D. Slack, S. Hilgard, H. Lakkaraju, and S. Singh, “Counterfactual explanations
can be manipulated,” in Proc. of the Annual Conference on Neural Information
Processing Systems (NeurIPS), 2021.

[153] D. Slack, S. Hilgard, S. Singh, and H. Lakkaraju, “Feature attributions and
counterfactual explanations can be manipulated,” CoRR, vol. abs/2106.12563,
2021.

[154] D. Smilkov, N. Thorat, B. Kim, F. B. Viégas, and M. Wattenberg, “SmoothGrad:
Removing noise by adding noise,” CoRR, vol. abs/1706.03825, 2017.

[155] A. Søgaard, “Shortcomings of interpretability taxonomiesfor deep neural net-
works,” Advances in Interpretable Machine Learning and Artificial Intelligence
(AIMLAI), 2022.

[156] T. Speith, “A review of taxonomies of explainable artificial intelligence (XAI)
methods,” in Proc. of the ACM Conference on Fairness, Accountability, and
Transparency (FAccT), 2022, pp. 2239–2250.

[157] J. Steinhardt, P. W. Koh, and P. Liang, “Certified defenses for data poisoning
attacks,” in Proc. of the Annual Conference on Neural Information Processing
Systems (NIPS), 2017, pp. 3517–3529.
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A. Scalar Robustness Notions

As we discussed in the main part of this paper, robustness
can either be considered a boolean or a scalar. The boolean
perspective has a clear definition, compared to the scalar
case. Nevertheless, to come up with a scalar we do have
multiple options:

1) We measure how many pairs satisfy the constraint and
how many do not.

2) We measure how close the pairs are to satisfying the
constraints on average, or in the worst case.

3) In addition, we can weigh both above suggestions with
the probability of the occurrence of the first tuple
element.

B. Restrictions and Constraints

In Table 3 we provide an overview on the restrictions
and constrains we define in this paper.

TABLE 3: Abbreviations and the corresponding formula for
each restriction and constraint, as defined above.

Name Formula

LIPdE ,dX ,K ∃γ ∈ R+ dE
(
hθ(x), γhθ(x̃)

)
≤ KdX (x, x̃)

EXPLSIMdE ,ϵ ∃γ ∈ R+ dE(hθ(x), γhθ(x̃)) ≤ ϵ

EXPLEQ ∃γ ∈ R+ hθ(x) = γhθ(x̃)

CLSEQ Fθ(x) = Fθ(x̃)

LOCdX ,δ d(x, x̃) ≤ δ

https://ojs.aaai.org/index.php/AAAI/article/view/17389


C. Meta-Review

C.1. Summary

This paper presents a SoK of explainable machine
learning (XAI) techniques in adversarial environments, by
(1) summarizing attacks designed to subvert explanations,
(2) formalizing notions of adversarial robustness in presence
of explanation-aware attacks for attackers with different
objectives, (3) presenting the taxonomy of existing defenses
against explanation-aware attacks, and (4) pointing out future
research directions in this space.

C.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

• Establishes a New Research Direction

C.3. Reasons for Acceptance

1) Topic: This paper studies a timely and important topic,
whose knowledge has not been sufficiently systemized
in existing literature. A SoK paper in this emerging
space will help guide future research efforts.

2) Attack coverage: This paper covers an extensive spec-
trum of explanation-aware attacks against existing post-
hoc feature-attribution XAI techniques, taxonomized
by different aspects (e.g., goal, input, system level) of
attacks.

3) Formulated XAI safety: This paper introduces a
well-grounded formulation and notion framework to
analyze the robustness of XAI techniques in presence
of explanation-aware attacks, as well as a taxonomy of
existing defenses against these attacks. Such formulation
and taxonomization helps drive general understandings
of XAI safety properties in formal settings.

4) Insightful open research questions: Many raised
research questions in this paper are worth exploration
and can potentially guide future research efforts.

C.4. Noteworthy Concerns

1) Pre-mature XAI: We believe an early SoK paper
helps drive this emerging space forward. At the same
time, however, we would like to see some discussions
regarding how the premature nature of this space and
its consequential operational issues (e.g., inaccuracy of
attribution results) interact with adversarial attempts –
such discussion can be qualitative.

2) Scope: There are some scope-related claims in the paper
that are not completely aligned with the actual paper
content. The scope of “XAI” techniques in this paper
seems to focus on a specific group (post-hoc feature
attribution for non-generative classification models)
instead of others.
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