Adversarial Machine Learning

Overview

SemesterWinter 2020
Course typeBlock Seminar
LecturerJun.-Prof. Dr. Wressnegger
AudienceInformatik Master & Bachelor
Credits4 ECTS
Room148, Building 50.34
LanguageEnglish or German
Linktba
Registrationtba

Description

This seminar is concerned with different aspects of adversarial machine learning. Next to the use of machine learning for security, also the security of machine learning algorithms is essential in practice. For a long time, machine learning has not considered worst-case scenarios and corner cases as those exploited by an adversarial nowadays.

The module introduces students to the recently extremely active field of attacks against machine learning and teaches them to work up results from recent research. To this end, the students will read up on a sub-field, prepare a seminar report, and present their work at the end of the term to their colleagues.

Topics include but are not limited to adversarial examples, model stealing, membership inferences, poisoning attacks, and defenses against such threats.

Schedule

DateStep
TBAPrimer on academic writing, assignment of topics
TBAArrange appointment with assistant
TBAIndividual meetings with assistant
TBASubmit final paper
TBASubmit review for fellow students
TBASubmit camera-ready version of your paper
TBAPresentation at final colloquium

Mailing List

News about the seminar, potential updates to the schedule, and additional material are distributed using a separate mailing list. Moreover, the list enables students to discuss topics of the seminar.

You can subscribe here.